If the domain and range of $f(x){ = ^{9 - x}}{C_{x - 1}}$ contains $m$ and $n$ elements respectively, then 

  • A

    $m = n$

  • B

    $m = n + 1$

  • C

    $m = n -1$

  • D

    $m = n + 2$

Similar Questions

Which of the following function is surjective but not injective

The domain of the function $f(x) =\frac{{\,\cot^{-1} \,x}}{{\sqrt {{x^2}\,\, - \,\,\left[ {{x^2}} \right]} }}$ , where $[x]$ denotes the greatest integer not greater than $x$, is :

If $f(x)$ and $g(x)$ are functions satisfying $f(g(x))$ = $x^3 + 3x^2 + 3x + 4$  $f(x)$ = $log^3x + 3$, then slope of the tangent to the curve $y = g(x)$ at $x =  \ -1$ is 

Range of ${\sin ^{ - 1\,}}\left( {\frac{{1 + {x^2}}}{{2 + {x^2}}}} \right)$ is 

Let $\quad E_1=\left\{x \in R : x \neq 1\right.$ and $\left.\frac{x}{x-1}>0\right\}$ and $\quad E_2=\left\{x \in E_1: \sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)\right.$ is a real number $\}$.

(Here, the inverse trigonometric function $\sin ^{-1} x$ assumes values in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ )

Let $f : E _1 \rightarrow R$ be the function defined by $f(x)=\log _c\left(\frac{x}{x-1}\right)$ and $g: E_2 \rightarrow R$ be the function defined by $g(x)=\sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)$

 $LIST I$ $LIST II$
$P$ The range of $f$ is $1$ $\left(-\infty, \frac{1}{1- e }\right] \cup\left[\frac{ e }{ e -1}, \infty\right)$
$Q$ The range of $g$ contains $2$ $(0,1)$
$R$ The domain of $f$ contains $3$ $\left[-\frac{1}{2}, \frac{1}{2}\right]$
$S$ The domain of $g$ is $4$ $(-\infty, 0) \cup(0, \infty)$
  $5$ $\left(-\infty, \frac{ e }{ e -1}\right]$
  $6$ $(-\infty, 0) \cup\left(\frac{1}{2}, \frac{ e }{ e -1}\right]$

The correct option is:

  • [IIT 2018]