If the domain and range of $f(x){ = ^{9 - x}}{C_{x - 1}}$ contains $m$ and $n$ elements respectively, then
$m = n$
$m = n + 1$
$m = n -1$
$m = n + 2$
Let $A$ be the set of all $50$ students of Class $X$ in a school. Let $f: A \rightarrow N$ be function defined by $f(x)=$ roll number of the student $x$. Show that $f$ is one-one but not onto.
Set $A$ has $3$ elements and set $B$ has $4$ elements. The number of injection that can be defined from $A$ to $B$ is
If $y = f(x) = \frac{{ax + b}}{{cx - a}}$, then $x$ is equal to
Let $f ^1( x )=\frac{3 x +2}{2 x +3}, x \in R -\left\{\frac{-3}{2}\right\}$ For $n \geq 2$, define $f ^{ n }( x )= f ^1 0 f ^{ n -1}( x )$. If $f ^5( x )=\frac{ ax + b }{ bx + a }, \operatorname{gcd}( a , b )=1$, then $a + b$ is equal to $............$.
The number of points, where the curve $f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in R$ cuts $x$-axis, is equal to